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Representation & Transmission of Visual Information

• A model for current state-of-the-art techniques:

• This model works well when transmission resources are not 
limited (bandwidth, QoS, etc.).

• When resources become scarce, every bit counts. The SP 
machinery starts to break at low rates.
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Our Dual Approach: Understand How We See, and 
Develop SP to Exploit this Understanding

• Develop more appropriate HVS models suitable for image 
applications via strategic psychophysical experimentation.

• Develop signal processing theory and practice to exploit this 
HVS characterization.
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Our Dual Approach: Understand How We See, and 
Develop SP to Exploit this Understanding

• Develop more appropriate HVS models suitable for image 
applications via strategic psychophysical experimentation.

• Develop signal processing theory and practice to exploit this 
HVS characterization.

• End goal: an image processing system incorporating a model 
which exhibits better performance than if the model is not used.
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Outline

• Three “classical” psychophysics results/HVS characterizations.

• Wavelets, the multichannel model, and images.

• Characterizing the HVS using natural images.

• Some SP strategies and applications to compression which 
exploit our characterization.

• Current work: image utility.
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Three Classical Psychophysical Results (V1)

Experiments with sinusoidal gratings
yield the following:

1. The human contrast sensitivity function (CSF)
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Human Contrast Sensitivity Function (CSF)
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Human Contrast Sensitivity Function (CSF)
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Some Comments on the CSF
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1. The CSF is not orientation specific.

2. The CSF is for simple gratings only.

3. The CSF represents subthreshold perception.
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Multi-Channel Model of the HVS

The HVS consists of channels, each tuned to range of spatial 
frequencies and orientations.

fhoriz

fvert

1.5 cy/deg
5.7 cy/deg

14.2 cy/deg

28.2 cy/deg
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Some Comments on the CSF
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Suprathreshold VTs — Contrast Constancy

Two gratings at different frequencies have equal perceived 
contrast at equal physical contrast as they become increasingly 
suprathreshold.
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Three Classical Psychophysical Results

Experiments with sinusoidal gratings
yield the following:

1. The human contrast sensitivity function (CSF) — 
the HVS has a low-pass response at the 
detection threshold, becoming flat as gratings 
become more visible.

2. Summation 
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Summation — How we see multiple components

CTA CTB CTA B+ ?=

...and this stimulus
has contrast

threshold

If this stimulus
has contrast

threshold

Then what is the
contrast threshold
of this stimulus?
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Summation — How we see multiple components

• For the compound stimuli to be as detectable as either of the 
individual components, 

• For sinusoidal components, . 

CTA CTB CTA B+ ?=

...and this stimulus
has contrast

threshold

If this stimulus
has contrast

threshold

Then what is the
contrast threshold
of this stimulus?

CA CTA  CB CTB + 1=
 2 4 
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Three Classical Psychophysical Results

Experiments with sinusoidal gratings
yield the following:

1. The human contrast sensitivity function (CSF) — 
the HVS has a low-pass response at the 
detection threshold, becoming flat as gratings 
become more visible.

2. Summation — The contrast threshold for a given sinusoid is 
40% lower when it is shown simultaneously with another, 
different sinusoid.
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Three Classical Psychophysical Results

Experiments with sinusoidal gratings
yield the following:

1. The human contrast sensitivity function (CSF) — 
the HVS has a low-pass response at the 
detection threshold, becoming flat as gratings 
become more visible.

2. Summation — The contrast threshold for a given sinusoid is 
40% lower when it is shown simultaneously with another, 
different sinusoid.

3. The standard gain control model for masking describes how 
thresholds are impacted based on surrounding image content.
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Standard Gain Control Model (Masking)

w = e.g., wavelet coefficient at location x, frequency f, orientation 

Usually  — effectively variance!

V1 neuron

Image 

Non-linearity

- + -

Input gain Output gain

÷

Inhibition from 
other neurons

Response

Neural
response: r x f    w x f   p

bq w x f   q

x f   S
+

----------------------------------------------------------=



p 2 q 2
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Standard Gain Control Applied to Textures

The standard visual masking model predicts the masking 
elevations well for homogeneous textures.
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The Signal Processor’s Question

Should the 3 classical psychophysical results, based on sinusoidal 
gratings be directly applied to processing images?

• Images are the superposition of many sinusoidal 
components.

• Images provide a very sophisticated “mask” to any distortions 
introduced by compression.

• Arbitrary image patches are not necessarily homogeneous 
textures.

• [Images have higher-level meaning to observers.]
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The Short Answer

Should the 3 classical psychophysical results, based on sinusoidal 
gratings be directly applied to processing images?
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Questions 

Using realistic maskers (images) and realistic stimuli (bandlimited, 
correlated quantization noise)...

• What are the visibility thresholds for quantization distortions as 
occur in natural images? (CSF without and with masking)

• How are distortions from multiple quantized subbands 
perceived? (Summation)

• Can we predict visibility thresholds from local natural image 
characteristics? (Masking) 

• [How should higher-level processing (i.e., the task) impact any 
necessary signal processing?]
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Outline

• Three “classical” psychophysics results/HVS characterizations.

• Our image coding framework: wavelets, the multichannel model, 
and digital images.

• Characterizing the HVS using natural images.

• Some SP strategies and applications to compression which 
exploit our characterization.
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2-D Wavelet Transform
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Wavelet Decomposition in Frequency Space
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Multi-Channel Model of the HVS

The HVS consists of channels, each tuned to range of spatial 
frequencies and orientations.
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1.5 cy/deg
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The Digital Signal vs. What We See 

• Pixel values vs. display luminance

• We describe stimuli in terms of contrast.

• For complex images, we’ll use RMS contrast.

L b k p+ =displayed luminance

black-level offset voltage-to-pixel
scaling factor

pixel value

monitor’s luminance-to-voltage
response curve exponent

Contrast = luminance change
mean background luminance
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Contrast for Complex Images 

• RMS Contrast defined using RMS deviation from mean 
background luminance 

• Recall . For typical values of b, k, , this can be 
linearized via a Taylor series, and

where D is the variance of the pixels, and

L

Crms
1
L
--- 1

N---- Li L– 
2

=

L b k p+ = 

Crms
2 2D=

 L
k----- b kp+ 

1 –=
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Contrast of Distorted Images

For the quantization noise, 

Note that we achieve  at band discard.

original

- =

quantized quantization noise

contrast 1
L
--- 1

N---- Li
2

=

Cmax
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Detection & Masked Detection, Simple Targets

= +

quantized original quantization noise

stimuli mask target

stimuli = target

= +

Detection:

Masked detection:
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Summation Stimulus, Unmasked Target

Unmasked uniform quantization noise in the HL5, LH5, and  HL5 + 
LH5 subbands.

CTHL5 CTLH5 CTHL5 LH5+ ?=

...and this stimulus
has contrast

threshold

If this stimulus
has contrast

threshold

Then what is the
contrast threshold
of this stimulus?
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Summation Stimulus, Masked Target

Masked uniform quantization noise in the HL5, LH5, and  HL5 + 
LH5 subbands.

CTHL5 CTLH5 CTHL5 LH5+ ?=
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Detection of Wavelet Quantization Noise in Images 
(Masked CSF)
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Summation in Natural Images

• For 2 subbands simultaneously quantized in an image, 
. Let’s approximate .

• Linear summation is consistent with summation observed in 
“object recognition tasks.” (We are moving toward cognition...)

• This suggests that observation is content-based rather than 
purely target-based — and leads us to global precedence.

1.5  1.8   1

CA CTA  CB CTB + 1=
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Global Precedence 
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Global Precedence 
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Global Precedence 
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Global Precedence 
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Global Precedence 
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Global Precedence 

...makes us
perceive this

information as
noise.

Omission of
this information...
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Global Precedence

The addition of high-frequency content visually degrades the 
image.
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Standard Gain Control Model (Masking)

w = e.g., wavelet coefficient at location x, frequency f, orientation 

Usually  — effectively variance!

V1 neuron

Image 

Non-linearity

- + -

Input gain Output gain

÷

Inhibition from 
other neurons

Response

Neural
response: r x f    w x f   p

bq w x f   q

x f   S
+

----------------------------------------------------------=



p 2 q 2
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This Model Does Not Work on Non-Homogeneous Patches

Texture Structure Edge

RMS Mask Contrast
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To Solve this Problem 

• Experimentally quantify masking of texture/structure/edge 
patches, and develop an appropriate gain control model.

Textures:

fur wood newspaper basket  

Structures:

baby pumpkin hand cat flower 

Edges:

butterfly sail post handle leaf 
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Relative Threshold Elevations

Textures mask more than structures (2x), which mask more than 
edges (2.5x).

edge structure texture
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Improved Gain Control Model with V2 Feedback

 is an inhibitory modulation term and varies based on patch 
type

V1 neuron

Image 

Non-linearity

- + -

Input gain Output gain

÷

Inhibition from 
other neurons

Response

r x f    w x f   p

bq gm w x f   q

x f   S
+

-----------------------------------------------------------------=Neural
response:

gm
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...and the Resulting Model Fits

Texture Structure Edge
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Applications of Our HVS Characterizations 

• Masked CSF and summation/global precedence

• Distortion-contrast quantization. 

• A new multiple description quantization strategy.

• Visual signal-to-noise ratio (VSNR) — a quality metric.

• Masked CSF, summation/global precedence, and gain control 
model

• Overhead-free optimal spatially localized quantization.
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Distortion-Contrast Quantization

A quantization strategy for wavelet-coded natural images based 
on

1. Our masked detection results at and above threshold;
2. Linearity in summation;
3. Global precedence.

Result: a strategy which works seamlessly for all rates, producing 
better looking images at up to 30% lower rates.

JPEG-2000 compatible (but not necessary!)
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Original Harbor Image
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Harbor, 0.4 bits/pixel, JPEG-2000 Framework

JPEG-2000 Contrast-based JPEG-2000
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Default
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DCQ
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So What’s the Bit Rate Savings? 

Cat Rainriver
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At Equal Quality: Rate Savings for Cat
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At Equal Quality: Rate Savings for Rainriver

Visual Quality
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Overhead-free Optimal Spatially Localized Quantization

• Goal — set quantization step sizes locally within an image 
according to local masking thresholds.

• Problem — step sizes must then be transmitted along with the 
image. Until now, the overhead has proved to be prohibitive.

• Our solution — information used to produce the step sizes is 
used as side information to compress the image. This does NOT 
incur a rate penalty: conditioning reduces entropy.
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Spatial Coder Block Diagram
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Visual & PSNR Results

Spatially localized quantization hides much more error in the 
image for the same visual quality.

Distortion 
visibility Image

Number preferred PSNR

Proposed JPEG-2K Proposed JPEG-2K

Barely 
visible

horse 
(1.13 bpp)

8 0 30.0 32.1

rhino 
(1.88 bpp)

7 1 24.3 29.0

Very
visible

horse 
(0.64 bpp)

6 2 27.0 28.3

rhino 
(1.24 bpp)

6 2 21.3 25.7
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Example Image at Threshold
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Residual Image



62

Multiple Description Image Coding

Description 1

Description 2 C
om
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Original Jointly decoded

Single description
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GOOD quality

GOOD quality
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Visually Optimized MD Image Coding

• Problem: HVS results are for distortions caused by uniform 
(convex) quantization cells, BUT “standard” MD quantizers use 
non-convex cells.

• Our solution: design a new MD quantization strategy which has 
equivalent R-D performance to standard techniques but which 
uses convex cells.

Side Quantizer 1

Side Quantizer 2
A bin in the joint

quantizer
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Examples: Original Harbor Image
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Harbor Images: 2 joint descriptions at equal quality...

MSE-optimized Visually-optimized
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...yield these 1 description images:

MSE-optimized Visually-optimized
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Concluding Comments

• Extensive psychophysical experiments have yielded more 
accurate HVS characterizations for image compression.

• These HVS characteristics have been used to drive signal 
processing algorithm development.

• The resulting algorithms outperform current state-of-the-art 
results.

• We have also applied this methodology to the design of a video 
quality measure.
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Task-Based Imaging — Quantifying Image Usefulness and 
its Relationship to Image Quality

What is task-based imaging?

From the user/application perspective:

• Who is viewing it and why? 
• How is the visual information to be used?

From the image processor’s perspective:

• What must be conveyed by the visual information? 
• What is nice to have, but optional for the task?
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What Makes an Image Recognizable?
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Detection & Masked Detection, More Realistic Stimuli

= +

quantized original quantization noise

stimuli mask target

stimuli = target

= +

Detection:

Masked detection:



71

Detection & Masked Detection, More Realistic Stimuli

= +

quantized original quantization noise

stimuli mask target

stimuli = target

= +

Detection:

Masked detection:

The target is the
distortion



72

Recognition/Utility — The Target is the Image Content
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Questions

• How can we measure “usefulness” of an image?

• What distortions should we explore?

• How is “quality” related to usefulness (utility)?

• Can current quality estimators predict utility?

• Can we create a utility estimator?
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A Framework for Measuring Image Utility

Not recognizable

Recognition

Recognizable

Visually

but distorted

lossless

threshold
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A Framework for Measuring Image Utility
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A Framework for Measuring Image Utility

Not recognizable

Recognition

Recognizable

Visually

but distorted

lossless

threshold

How “long” are these distances?
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Three Experiments: Recognition, Utility Assessment, 
Quality Assessment

1. Recognition 
Single-image stimulus: “Do you recognize the image 
content?”

2. Utility assessment 
Image pair stimulus: “Which image tells you more about the 
content?”

3. Quality assessment
SAMVIQ or ACR
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