

Past and Future of Digital Watermarking

Santa Clara IEEE SP Chapter

Ton Kalker Hewlett-Packard Labs

© 2006 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notic

Executive Summary

- Digital watermarking is a well-understood technique for hidden communication.
- However, despite initial high hopes, digital watermarking has not had a major impact on copy right, copy protection and Digital Rights Management.
- One of the main reasons for this state of affair is the poorly understood security aspects of digital watermarking. Improving this understanding is a major open problem.
- Any claim that watermarking is relevant for copyright protection should be taken with a grain of salt.

Overview

- Definitions
- Applications
- Properties
- Methods
- Security
- Future
- Conclusions

Definitions

Digital Watermarking

• Original signal

- host (cover)
 - audio, image, video, 3D model, …
- Auxiliary data
 - potentially related to host
- Multiplexed into one signal
 - Watermarked signal
- Two receivers
 - Human receiver
 - signal detector
 - host signal
 - Mechanical receiver
 - watermark detector
 - auxiliary data

Formal Model

Applications

Classification

Robust watermarking

- -Copyright protection
 - Broadcast monitoring
 - Tracking & Tracking
- -Copy protection
 - Copy control signaling (DVD)
- (Semi) Fragile watermarking
 - -Authentication
 - Tamper detection
- Steganography
 - -Message hiding
- Reversible watermarking

2008/09/02

Philips Enhances Its Content Identification Business With Teletrax Content Monitoring Services

2008/05/05

Teletrax Announces Multi-Year Contract Renewal With The NBC Agency

0

2008/04/29

New Media Measurement Capabilities Gaining Traction Rapidly

Industry news

2008/08/14

Medialink Board Approves Philips Assuming Full Ownership of Teletrax

2008/07/31

Digimarc Announces Record Date for Spin-Off

In your industry:

Will mobile devices surpass TV as THE way to view video? **Never**

Future of Television West

Teletrax: the way to know when, where and how your content is being used around the world.

How do you: track and monitor video content? Verify broadcast airings: when, where and as contracted? Protect content from piracy or unauthorized re-use? Manage inventory and control video assets?

Teletrax® is the only global media intelligence and broadcast verification service.

Teletrax enables clients such as **entertainment** studios, **news** and **sport** organizations, **TV syndicators**, **direct response** and **advertisers** to determine precisely **when, where and how** their video content is being used around the world. Over **1,500 television channels** in 50 countries are constantly being monitored, including **all 210** U.S. DMAs.

Teletrax yields critical broadcast intelligence allowing media executives to **keep control** and **better monetize** their assets. Aleading broadcast monitoring service provider, Telerax combines cutting-edge **watermarking technology**, from Philips and an intense focus on **customer service**.

For more details download the Teletrax brochure, see our FAQ or contact us.

Every second counts

Broadcast Monitoring

Broadcast Monitoring

- Granularity $\approx 1 \text{ sec}$
- Payload \approx (3×) 64 bits
- Robustness
 - MPEG \ge 2 MB/sec
 - PAL-NTSC conversions
 - Change of geometry
- Imperceptible at studio quality
- Affordable monitoring infrastructure
- Security

Classification

Robust watermarking

- -Copyright protection
 - Broadcast monitoring
 - Tracking & Tracking
- -Copy protection
 - Copy control signaling (DVD)
- (Semi) Fragile watermarking
 - -Authentication
 - Tamper detection
- Steganography
 - -Message hiding
- Reversible watermarking

Classification

Robust watermarking

- Copyright protection
 - Broadcast monitoring
 - Tracking & Tracking
- -Copy protection
 - Copy control signaling (DVD)
- (Semi) Fragile watermarking
 - -Authentication
 - Tamper detection
- Steganography
 - -Message hiding
- Reversible watermarking

Compliant World

- All content is encrypted on all digital interfaces
- Link-by-link encryption; devices internally process clear content
- Controlled by CSS, 5C, 4C, ...
- Includes DVD players, DVD RAM, SDMI audio, DVD audio, PC's

Non-Compliant World

- All analog devices, some digital
- Marginalized by standardization efforts
 CD R

DVD copy protection

Four copy states requested

- -Copy-Free (CF)
- -Copy-Never (CN)
- Copy-Once (CO)
- -Copy-No-More (CM)
- Watermarking for DVD copy protection
 - -1996 2000
 - -Copy Protection Technical Working Group (CPTWG)
 - Effort failed
 - Security
 - Implementation

Properties

Robustness

- resistance to (non-malevolent) quality respecting processing
- Perceptibility
 - perceptibility of the watermark in the intended application
- False Positive
 - a positive detection on non-marked content

Watermark parameters

Granularity

- minimal spatio-temporal interval for reliable embedding and detection
- Capacity
 - related to payload
 - -#bits / sample
- Security
 - -vulnerability to intentional attacks
 - -Kerkhoffs' principle

Classification – not discussed

Robust watermarking

- Copyright protection
 - Broadcast monitoring
 - Tracking & Tracking
- -Copy protection
 - Copy control signaling (DVD)

(Semi) Fragile watermarking

- -Authentication
 - Tamper detection
- Steganography
 - Message hiding
- Reversible watermarking

Methods

Spread-Spectrum Watermarking

- 2 disjoint sets, A and B, of N/2 pixels each
 - pixels in each set ("patch") chosen randomly
 - assumption:

$$S = \sum_{i} A_{i} - \sum_{i} B_{i} \sum N \approx 0$$

- embedding bit $b = \{-1, +1\}$: $A'_i \leftarrow A_i + b^*1$, $B'_i \leftarrow B_i - b^*1$

$$S' = \sum_{i} A'_{i} - \sum_{i} B'_{i} N = (\sum_{i} A_{i} - \sum_{i} B_{i}) / N + (N / 2 - (-N / 2)) / N \approx b$$

- if $|S'| \approx 1$, watermark present with value sign(S')

- Prototypical spread-spectrum watermarking
 - communicate information via many small changes

22 September 2008

JPEG compression

Additive noise & clipping

Detection (effectiveness)

- Correlation sum D
 - assumed Gaussian
 - $-\sigma_W = 1$
 - variance $\sigma_X^2/(N)$
- Decision rule becomes

 $\hat{b} = \begin{cases} +1, & \text{if } D > 0; \\ -1 & \text{if } D < 0. \end{cases}$

- Probability of error
 - Q function

$$Q\left(rac{\sqrt{N}\sigma_{W}}{\sigma_{X}}
ight)$$

Detection (robustness)

- Correlation sum D
 - assumed Gaussian
 - mean -a, +a
 - variance $\sigma_X^2/(N)$
- Decision rule becomes

 $\hat{b} = \begin{cases} +1, & \text{if } D > 0; \\ -1 & \text{if } D < 0. \end{cases}$

Probability of error

Q function

Transmitting n-bit messages

Initialization

- for each message $m \in \{0, \, ..., \, 2^n\}$ select a watermark sequence W_m
- Encoder and decoder share the code book {W_m}
- Loop
 - Encoder chooses message m
 - Encoder adds $W_{\rm m}$ to host $C_{\rm o}$
 - Decoder correlates C_{nw} with every element in code book
 - Decoder declares the message m' such that $W_{m^{\prime}}$ has the largest correlation with C_{nw}

Optimal Rate Question

Given a some statistical constraints on

- the host C_o
 - model and energy
- the embedding distortion P_e
 - type and power
- the channel distortion P_a
 - type and power
- and allowing for arbitrary long signals,
- what is the maximal <u>rate</u> (number of messages per sample) that can be achieved?

Maximal Transmission Rate

Assumptions

- $-C_o$ is a white Gaussian signal of power P_o
- The embedding power is restricted to P_e
- Additive White Gaussian Noise (AWGN) of Power Pa

It is the watermark!

Spread-Spectrum Bound

Observation

- $-\underline{host\ signal}$ and channel are AWGN to the watermark signal W_m
- Shannon's Theorem applies

$$R = \frac{1}{2}\log(1 + \frac{P_e}{P_o + P_a})$$

For small WDR and modest WNR

$$R = \frac{1}{2}\log(1 + \frac{P_e}{P_o})$$

- Host interference dominates

Writing on Dirty Paper

Shannon

- Interference only statistically known to the encoder
- -Cause of host interference
- Watermarking
 - Interference known sample by sample to the encoder
 - Potential to do better than Shannon
- Writing on Dirty Paper (Costa, 1985)
 - -Host interference can be completely suppressed

Statistical Knowledge

Large distortion

Sample Knowledge

Small distortion

Writing on Dirty Paper

Performance graph

Security

Security - cryptography

- Definition: Embedded information cannot be detected, read (interpreted), and/or modified, or deleted by unauthorized parties
- Kerckhoff's principle: Security resides in the secrecy of the key, <u>not</u> in the secrecy of the algorithm.

Transmission Security

OSI Terminology

Watermarking Security Example

- Limited message set
- Reading OK
- Alteration NOK!

Lessons Learned

- Watermarking security is <u>not cryptography</u>!
- **Definition**: Watermarking security refers to the inability by unauthorized users to have access to the raw watermarking channel (no semantics).
 - Remove (see previous slide)
 - Read & Estimate
 - -Write
 - Modify

Kerckhoffs' Principle

- Well known cryptographic rule of thumb
 - Security should reside in the keys, not in hiding the algorithm
- Kerckhoffs' principle in watermarking?
 - -<u>No</u>: make up for watermarking immaturity
 - -Yes: uncertain security is worse than weak security.

Keys in Watermarking

- Key K determines embedding & detection parameters
 - Pseudo-random noise sequences
 - Locations
 - ...
 - In general: internal parameters 'IP'
- Security of mapping K → 'IP' of no relevance to WM security
- Security resides in hiding 'IP', i.e. a large key space is needed.

Key Mapping Security

Classification I: Removal Attack

- Definition: Unauthorized closing down of the watermark bit-pipe.
- Conflicting classification from literature (Geneva)
 - Removal attack
 - Geometric attack
 - Cryptographic attack
 - Protocol attack
- There is no absolute notion of
 - Geometry
 - Watermark presence
- Methodologically it is better better to merge the first two (Geneva) classes

Classification II: Detection Attack

- Definition: Unauthorized observation of the watermark bits (no semantics)
- Strong relation to removal attack
- Detection attacks build better watermark detectors

Classification III: Writing Attack

- Definition: unauthorized insertion of watermark bits
- Example: Copy Attack (Kutter et al.)
 - Estimation:
 - get hold of a meaningful watermark bits
 - -Insertion
 - Insert bits into other content
- Countermeasure: content dependent watermarks
 - Every image needs its own random sequence, locations, etc.

Other Attack Parameters

- Number of watermarked objects
 - SOSW, SOMW, MOSW, MOMW
- Availability of tools
 - Embedder, detector
- Knowledge of algorithms: a pointless effort?
 - Limited number of options
 - Literature
 - Patents
- Universality
 - Single objects vs. the complete system

Cryptographic Security of Watermarking?

- Cryptography: controlled randomness
 - $-M_E = E_K[M]$ is a discontinuous function of M
 - No local invertibility
 - Only way out: exhaustive search
- Robust watermarking: controlled dependency
 - Implied by robustness
 - Continuous dependency on PR sequence, location parameters, etc
 - Local invertibility

Watermark Estimation Through Detector Analysis (ICIP-98)

Cryptographic Security of Watermarking?

- Unrealistic to expect cryptographic security?
 - SDMI?
 - DVD-Video?
 - Integrated with DRM?
- Maybe not necessary for meaningful deployment
 - Movies/Music/Images are not military-grade secrets
 - Watermarking can provide (commercially) meaningful thresholds
 - Watermarking may not be the weakest link in the chain

Future

Future

- Watermarking is not a panacea for copy right problems
 - Deployment problems (not discussed)
 - Incentives, costs, authority, legal, ...
 - -Technical
 - Security of watermarking is not understood
- Challenging problems
 - Modeling watermark security
 - Measuring watermark security
 - Building secure watermark systems

Conclusions

Executive Summary

- Digital watermarking is a well-understood technique for hidden communication.
- However, despite initial high hopes, digital watermarking has not had a major impact on copy right, copy protection and Digital Rights Management.
- One of the main reasons for this state of affair is the poorly understood security aspects of digital watermarking. Improving this understanding is a major open problem.
- Any claim that watermarking is relevant for copyright protection should be taken with a grain of salt.

